Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 94 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 30 tok/s Pro
GPT-4o 91 tok/s
GPT OSS 120B 454 tok/s Pro
Kimi K2 212 tok/s Pro
2000 character limit reached

Unlocking Efficient, Scalable, and Continual Knowledge Editing with Basis-Level Representation Fine-Tuning (2503.00306v1)

Published 1 Mar 2025 in cs.CL and cs.LG

Abstract: LLMs have achieved remarkable performance on various natural language tasks. However, they are trained on static corpora and their knowledge can become outdated quickly in the fast-changing world. This motivates the development of knowledge editing methods designed to update certain knowledge in LLMs without changing unrelated others. To make selective edits, previous efforts often sought to update a small amount of parameters in some specific layer(s) of a LLM. Nonetheless, in challenging scenarios, they still fall short in making successful edits while preserving knowledge irrelevant to the updates simultaneously, resulting in a notable editing-locality trade-off. In this work, we question if the trade-offs are caused by the fact that parameter-based updates have a global effect, i.e., edited parameters affect all inputs indiscriminately. In light of this, we explore the feasibility of representation fine-tuning, which applied some linear update to a few representations in a learned subspace, for knowledge editing. While being effective to enhance an LLM's general ability as demonstrated in the previous work, we theoretically show that this linear update imposes a tension in editing-locality trade-off. Subsequently, BaFT is proposed to break the linearity. BaFT computes a weight for each basis that spans a dimension of the subspace based on the input representation. This input-dependent weighting mechanism allows BaFT to manage different types of knowledge in an adaptive way, thereby achieving a better editing-locality trade-off. Experiments on three LLMs with five editing benchmarks in diverse scenarios show the superiority of our method.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.