Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Genetics-Driven Personalized Disease Progression Model (2503.00028v1)

Published 24 Feb 2025 in cs.LG and cs.AI

Abstract: Modeling disease progression through multiple stages is critical for clinical decision-making for chronic diseases, e.g., cancer, diabetes, chronic kidney diseases, and so on. Existing approaches often model the disease progression as a uniform trajectory pattern at the population level. However, chronic diseases are highly heterogeneous and often have multiple progression patterns depending on a patient's individual genetics and environmental effects due to lifestyles. We propose a personalized disease progression model to jointly learn the heterogeneous progression patterns and groups of genetic profiles. In particular, an end-to-end pipeline is designed to simultaneously infer the characteristics of patients from genetic markers using a variational autoencoder and how it drives the disease progressions using an RNN-based state-space model based on clinical observations. Our proposed model shows improvement on real-world and synthetic clinical data.

Summary

We haven't generated a summary for this paper yet.