Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Triple Phase Transitions: Understanding the Learning Dynamics of Large Language Models from a Neuroscience Perspective (2502.20779v2)

Published 28 Feb 2025 in cs.CL, cs.AI, cs.LG, and q-bio.NC

Abstract: LLMs often exhibit abrupt emergent behavior, whereby new abilities arise at certain points during their training. This phenomenon, commonly referred to as a ''phase transition'', remains poorly understood. In this study, we conduct an integrative analysis of such phase transitions by examining three interconnected perspectives: the similarity between LLMs and the human brain, the internal states of LLMs, and downstream task performance. We propose a novel interpretation for the learning dynamics of LLMs that vary in both training data and architecture, revealing that three phase transitions commonly emerge across these models during training: (1) alignment with the entire brain surges as LLMs begin adhering to task instructions Brain Alignment and Instruction Following, (2) unexpectedly, LLMs diverge from the brain during a period in which downstream task accuracy temporarily stagnates Brain Detachment and Stagnation, and (3) alignment with the brain reoccurs as LLMs become capable of solving the downstream tasks Brain Realignment and Consolidation. These findings illuminate the underlying mechanisms of phase transitions in LLMs, while opening new avenues for interdisciplinary research bridging AI and neuroscience.

Summary

We haven't generated a summary for this paper yet.