Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Rogers--Ramanujan Type Identities for Rank Two Partial Nahm Sums (2502.19309v1)

Published 26 Feb 2025 in math.NT and math.CO

Abstract: Let $A$ be a $r\times r$ rational nonzero symmetric matrix, $B$ a rational column vector, $C$ a rational scalar. For any integer lattice $L$ and vector $v$ of $\mathbb{Z}r$, we define Nahm sum on the lattice coset $v+L\in \mathbb{Z}r/L$: \begin{align*}\label{eq-lattice-sum} f_{A,B,C,v+L}(q):=\sum_{n=(n_1,\dots,n_r)\mathrm{T} \in v+L} \frac{q{\frac{1}{2}n\mathrm{T} An+n\mathrm{T} B+C}}{(q;q){n_1}\cdots (q;q){n_r}}. \end{align*} If $L$ is a full rank lattice and a proper subset of $\mathbb{Z}r$, then we call $f_{A,B,C,v+L}(q)$ a rank $r$ partial Nahm sum. When the rank $r=1$, we find eight modular partial Nahm sums using some known identities. When the rank $r=2$ and $L$ is one of the lattices $\mathbb{Z}(2,0)+\mathbb{Z}(0,1)$, $\mathbb{Z}(1,0)+\mathbb{Z}(0,2)$ or $\mathbb{Z}(2,0)+\mathbb{Z}(0,2)$, we find 14 types of symmetric matrices $A$ such that there exist vectors $B,v$ and scalars $C$ so that the partial Nahm sum $f_{A,B,C,v+L}(q)$ is modular. We establish Rogers--Ramanujan type identities for the corresponding partial Nahm sums which prove their modularity.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com