Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
96 tokens/sec
Gemini 2.5 Pro Premium
42 tokens/sec
GPT-5 Medium
20 tokens/sec
GPT-5 High Premium
27 tokens/sec
GPT-4o
100 tokens/sec
DeepSeek R1 via Azure Premium
86 tokens/sec
GPT OSS 120B via Groq Premium
464 tokens/sec
Kimi K2 via Groq Premium
181 tokens/sec
2000 character limit reached

Developing heuristic solution techniques for large-scale unit commitment models (2502.19012v1)

Published 26 Feb 2025 in math.OC

Abstract: Shifting towards renewable energy sources and reducing carbon emissions necessitate sophisticated energy system planning, optimization, and extension. Energy systems optimization models (ESOMs) often form the basis for political and operational decision-making. ESOMs are frequently formulated as linear (LPs) and mixed-integer linear (MIP) problems. MIPs allow continuous and discrete decision variables. Consequently, they are substantially more expressive than LPs but also more challenging to solve. The ever-growing size and complexity of ESOMs take a toll on the computational time of state-of-the-art commercial solvers. Indeed, for large-scale ESOMs, solving the LP relaxation -- the basis of modern MIP solution algorithms -- can be very costly. These time requirements can render ESOM MIPs impractical for real-world applications. This article considers a set of large-scale decarbonization-focused unit commitment models with expansion decisions based on the REMix framework (up to 83 million variables and 900,000 discrete decision variables). For these particular instances, the solution to the LP relaxation and the MIP optimum lie close. Based on this observation, we investigate the application of relaxation-enforced neighborhood search (RENS), machine learning guided rounding, and a fix-and-propagate (FP) heuristic as a standalone solution method. Our approach generated feasible solutions 20 to 100 times faster than GUROBI, achieving comparable solution quality with primal-dual gaps as low as 1% and up to 35%. This enabled us to solve numerous scenarios without lowering the quality of our models. For some instances that GUROBI could not solve within two days, our \FP method provided feasible solutions in under one hour.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com