Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The defocusing Calogero--Moser derivative nonlinear Schr{ö}dinger equation with a nonvanishing condition at infinity (2502.17968v1)

Published 25 Feb 2025 in math.AP

Abstract: We consider the defocusing Calogero--Moser derivative nonlinear Schr{\"o}dinger equation\begin{align*}i \partial_{t} u+\partial_{x}2 u-2\Pi D\left(|u|{2}\right)u=0, \quad (t,x ) \in \mathbb{R} \times \mathbb{R}\end{align*}posed on $E := \left{u \in L{\infty}(\mathbb{R}): u' \in L{2}(\mathbb{R}), u'' \in L{2}(\mathbb{R}), |u|{2}-1 \in L{2}(\mathbb{R})\right}$. We prove the global well-posedness of this equation in $E$. Moreover, we give an explicit formula for the chiral solution to this equation.

Summary

We haven't generated a summary for this paper yet.