Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lower Complexity Bounds of First-order Methods for Affinely Constrained Composite Non-convex Problems (2502.17770v2)

Published 25 Feb 2025 in math.OC

Abstract: Many recent studies on first-order methods (FOMs) focus on \emph{composite non-convex non-smooth} optimization with linear and/or nonlinear function constraints. Upper (or worst-case) complexity bounds have been established for these methods. However, little can be claimed about their optimality as no lower bound is known, except for a few special \emph{smooth non-convex} cases. In this paper, we make the first attempt to establish lower complexity bounds of FOMs for solving a class of composite non-convex non-smooth optimization with linear constraints. Assuming two different first-order oracles, we establish lower complexity bounds of FOMs to produce a (near) $\epsilon$-stationary point of a problem (and its reformulation) in the considered problem class, for any given tolerance $\epsilon>0$. Our lower bounds indicate that the existence of a non-smooth convex regularizer can evidently increase the difficulty of an affinely constrained regularized problem over its nonregularized counterpart. In addition, we show that our lower bound of FOMs with the second oracle is tight, with a difference of up to a logarithmic factor from an upper complexity bound established in the extended arXiv version of this paper.

Summary

We haven't generated a summary for this paper yet.