Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sparsity May Be All You Need: Sparse Random Parameter Adaptation (2502.15975v2)

Published 21 Feb 2025 in cs.CL and cs.AI

Abstract: Full fine-tuning of LLMs for alignment and task adaptation has become prohibitively expensive as models have grown in size. Parameter-Efficient Fine-Tuning (PEFT) methods aim at significantly reducing the computational and memory resources needed for fine-tuning these models by only training on a small number of parameters instead of all model parameters. Currently, the most popular PEFT method is the Low-Rank Adaptation (LoRA), which freezes the parameters of the model to be fine-tuned and introduces a small set of trainable parameters in the form of low-rank matrices. We propose simply reducing the number of trainable parameters by randomly selecting a small proportion of the model parameters to train on. In this paper, we compare the efficiency and performance of our proposed approach with PEFT methods, including LoRA, as well as full parameter fine-tuning.

Summary

We haven't generated a summary for this paper yet.