Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-Faceted Multimodal Monosemanticity (2502.14888v3)

Published 16 Feb 2025 in cs.CV and cs.AI

Abstract: Humans experience the world through multiple modalities, such as, vision, language, and speech, making it natural to explore the commonality and distinctions among them. In this work, we take a data-driven approach to address this question by analyzing interpretable, monosemantic features extracted from deep multimodal models. Specifically, we investigate CLIP, a prominent visual-language representation model trained on massive image-text pairs. Building on prior research in single-modal interpretability, we develop a set of multi-modal interpretability tools and measures designed to disentangle and analyze features learned from CLIP. Specifically, we introduce the Modality Dominance Score (MDS) to attribute each CLIP feature to a specific modality. We then map CLIP features into a more interpretable space, enabling us to categorize them into three distinct classes: vision features (single-modal), language features (single-modal), and visual-language features (cross-modal). Interestingly, this data-driven categorization closely aligns with human intuitive understandings of different modalities. We further show that this modality decomposition can benefit multiple downstream tasks, including reducing bias in gender detection, generating cross-modal adversarial examples, and enabling modal-specific feature control in text-to-image generation. These results indicate that large-scale multimodal models, when equipped with task-agnostic interpretability tools, can offer valuable insights into the relationships between different data modalities.

Summary

We haven't generated a summary for this paper yet.