Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Multivariate Robust Mean Estimation Under Mean-Shift Contamination (2502.14772v1)

Published 20 Feb 2025 in cs.DS, cs.LG, math.ST, stat.ML, and stat.TH

Abstract: We study the algorithmic problem of robust mean estimation of an identity covariance Gaussian in the presence of mean-shift contamination. In this contamination model, we are given a set of points in $\mathbb{R}d$ generated i.i.d. via the following process. For a parameter $\alpha<1/2$, the $i$-th sample $x_i$ is obtained as follows: with probability $1-\alpha$, $x_i$ is drawn from $\mathcal{N}(\mu, I)$, where $\mu \in \mathbb{R}d$ is the target mean; and with probability $\alpha$, $x_i$ is drawn from $\mathcal{N}(z_i, I)$, where $z_i$ is unknown and potentially arbitrary. Prior work characterized the information-theoretic limits of this task. Specifically, it was shown that, in contrast to Huber contamination, in the presence of mean-shift contamination consistent estimation is possible. On the other hand, all known robust estimators in the mean-shift model have running times exponential in the dimension. Here we give the first computationally efficient algorithm for high-dimensional robust mean estimation with mean-shift contamination that can tolerate a constant fraction of outliers. In particular, our algorithm has near-optimal sample complexity, runs in sample-polynomial time, and approximates the target mean to any desired accuracy. Conceptually, our result contributes to a growing body of work that studies inference with respect to natural noise models lying in between fully adversarial and random settings.

Summary

We haven't generated a summary for this paper yet.