Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

STaR-SQL: Self-Taught Reasoner for Text-to-SQL (2502.13550v1)

Published 19 Feb 2025 in cs.CL

Abstract: Generating step-by-step "chain-of-thought" rationales has proven effective for improving the performance of LLMs on complex reasoning tasks. However, applying such techniques to structured tasks, such as text-to-SQL, remains largely unexplored. In this paper, we introduce Self-Taught Reasoner for text-to-SQL (STaR-SQL), a novel approach that reframes SQL query generation as a reasoning-driven process. Our method prompts the LLM to produce detailed reasoning steps for SQL queries and fine-tunes it on rationales that lead to correct outcomes. Unlike traditional methods, STaR-SQL dedicates additional test-time computation to reasoning, thereby positioning LLMs as spontaneous reasoners rather than mere prompt-based agents. To further scale the inference process, we incorporate an outcome-supervised reward model (ORM) as a verifier, which enhances SQL query accuracy. Experimental results on the challenging Spider benchmark demonstrate that STaR-SQL significantly improves text-to-SQL performance, achieving an execution accuracy of 86.6%. This surpasses a few-shot baseline by 31.6% and a baseline fine-tuned to predict answers directly by 18.0%. Additionally, STaR-SQL outperforms agent-like prompting methods that leverage more powerful yet closed-source models such as GPT-4. These findings underscore the potential of reasoning-augmented training for structured tasks and open the door to extending self-improving reasoning models to text-to-SQL generation and beyond.

Summary

We haven't generated a summary for this paper yet.