Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MATS: An Audio Language Model under Text-only Supervision (2502.13433v2)

Published 19 Feb 2025 in cs.SD and eess.AS

Abstract: Large audio-LLMs (LALMs), built upon powerful LLMs, have exhibited remarkable audio comprehension and reasoning capabilities. However, the training of LALMs demands a large corpus of audio-language pairs, which requires substantial costs in both data collection and training resources. In this paper, we propose MATS, an audio-language multimodal LLM designed to handle Multiple Audio task using solely Text-only Supervision. By leveraging pre-trained audio-language alignment models such as CLAP, we develop a text-only training strategy that projects the shared audio-language latent space into LLM latent space, endowing the LLM with audio comprehension capabilities without relying on audio data during training. To further bridge the modality gap between audio and language embeddings within CLAP, we propose the Strongly-related noisy text with audio (Santa) mechanism. Santa maps audio embeddings into CLAP language embedding space while preserving essential information from the audio input. Extensive experiments demonstrate that MATS, despite being trained exclusively on text data, achieves competitive performance compared to recent LALMs trained on large-scale audio-language pairs.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com