Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Are Multilingual Language Models an Off-ramp for Under-resourced Languages? Will we arrive at Digital Language Equality in Europe in 2030? (2502.12886v1)

Published 18 Feb 2025 in cs.CL

Abstract: LLMs demonstrate unprecedented capabilities and define the state of the art for almost all NLP tasks and also for essentially all Language Technology (LT) applications. LLMs can only be trained for languages for which a sufficient amount of pre-training data is available, effectively excluding many languages that are typically characterised as under-resourced. However, there is both circumstantial and empirical evidence that multilingual LLMs, which have been trained using data sets that cover multiple languages (including under-resourced ones), do exhibit strong capabilities for some of these under-resourced languages. Eventually, this approach may have the potential to be a technological off-ramp for those under-resourced languages for which "native" LLMs, and LLM-based technologies, cannot be developed due to a lack of training data. This paper, which concentrates on European languages, examines this idea, analyses the current situation in terms of technology support and summarises related work. The article concludes by focusing on the key open questions that need to be answered for the approach to be put into practice in a systematic way.

Summary

We haven't generated a summary for this paper yet.