Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 98 tok/s
GPT OSS 120B 472 tok/s Pro
Kimi K2 196 tok/s Pro
2000 character limit reached

IMTS-Mixer: Mixer-Networks for Irregular Multivariate Time Series Forecasting (2502.11816v1)

Published 17 Feb 2025 in cs.LG

Abstract: Forecasting Irregular Multivariate Time Series (IMTS) has recently emerged as a distinct research field, necessitating specialized models to address its unique challenges. While most forecasting literature assumes regularly spaced observations without missing values, many real-world datasets - particularly in healthcare, climate research, and biomechanics - violate these assumptions. Time Series (TS)-mixer models have achieved remarkable success in regular multivariate time series forecasting. However, they remain unexplored for IMTS due to their requirement for complete and evenly spaced observations. To bridge this gap, we introduce IMTS-Mixer, a novel forecasting architecture designed specifically for IMTS. Our approach retains the core principles of TS mixer models while introducing innovative methods to transform IMTS into fixed-size matrix representations, enabling their seamless integration with mixer modules. We evaluate IMTS-Mixer on a benchmark of four real-world datasets from various domains. Our results demonstrate that IMTS-Mixer establishes a new state-of-the-art in forecasting accuracy while also improving computational efficiency.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.