Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SQL-o1: A Self-Reward Heuristic Dynamic Search Method for Text-to-SQL (2502.11741v3)

Published 17 Feb 2025 in cs.DB and cs.AI

Abstract: Text-to-SQL (Text2SQL) aims to map natural language questions to executable SQL queries. Although LLMs have driven significant progress, current approaches struggle with poor transferability to open-source LLMs, limited robustness against logic and function errors in complex queries, and inefficiencies in structured search. We introduce SQL-o1, a self-reward-driven heuristic search framework built on an agent-based architecture to enhance model reasoning capabilities. SQL-o1 leverages Monte Carlo Tree Search (MCTS) for structured, multi-step exploration, and incorporates a dynamic pruning strategy to accelerate inference without sacrificing accuracy. On the Spider and Bird benchmarks, SQL-o1 achieves a +10.8 execution accuracy improvement on the complex Bird dataset, surpassing even GPT-4-based models. Notably, it exhibits strong few-shot generalization and robust cross-model transferability across open-source LLMs. Our code is available at:https://github.com/ShuaiLyu0110/SQL-o1.

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com
X Twitter Logo Streamline Icon: https://streamlinehq.com