Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Non-Uniform Memory Sampling in Experience Replay (2502.11305v1)

Published 16 Feb 2025 in cs.LG

Abstract: Continual learning is the process of training machine learning models on a sequence of tasks where data distributions change over time. A well-known obstacle in this setting is catastrophic forgetting, a phenomenon in which a model drastically loses performance on previously learned tasks when learning new ones. A popular strategy to alleviate this problem is experience replay, in which a subset of old samples is stored in a memory buffer and replayed with new data. Despite continual learning advances focusing on which examples to store and how to incorporate them into the training loss, most approaches assume that sampling from this buffer is uniform by default. We challenge the assumption that uniform sampling is necessarily optimal. We conduct an experiment in which the memory buffer updates the same way in every trial, but the replay probability of each stored sample changes between trials based on different random weight distributions. Specifically, we generate 50 different non-uniform sampling probability weights for each trial and compare their final accuracy to the uniform sampling baseline. We find that there is always at least one distribution that significantly outperforms the baseline across multiple buffer sizes, models, and datasets. These results suggest that more principled adaptive replay policies could yield further gains. We discuss how exploiting this insight could inspire new research on non-uniform memory sampling in continual learning to better mitigate catastrophic forgetting. The code supporting this study is available at $\href{https://github.com/DentonJC/memory-sampling}{https://github.com/DentonJC/memory-sampling}$.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Andrii Krutsylo (5 papers)
Github Logo Streamline Icon: https://streamlinehq.com