Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Enhancing Cross-Tokenizer Knowledge Distillation with Contextual Dynamical Mapping (2502.11104v1)

Published 16 Feb 2025 in cs.CL

Abstract: Knowledge Distillation (KD) has emerged as a prominent technique for model compression. However, conventional KD approaches primarily focus on homogeneous architectures with identical tokenizers, constraining their applicability in cross-architecture scenarios. As for the cross-tokenizer KD, the differences in the tokenizers give rise to two fundamental challenges: (1) sequence misalignment caused by divergent tokenization strategies, and (2) mismatched vocabulary size and composition. While existing probability-matching methods attempt to address these issues, their efficacy remains limited due to suboptimal alignment in both the sequence and vocabulary aspects. To overcome these limitations, we propose Contextual Dynamic Mapping (CDM), a novel cross-tokenizer distillation framework that employs contextual information to enhance sequence alignment precision and dynamically improves vocabulary mapping. We evaluated the effectiveness of our approach across five advanced and widely-used model families (i.e, LLama3, Phi3, Gemma2, OPT and Qwen2), which were configured into three distinct teacher-student pairs. Our method shows significant advantages over existing cross-tokenizer distillation baselines across diverse benchmarks, including instruction-following, code generation and math. Notably, our analysis reveals that combining conventional same-tokenizer distillation and cross-tokenizer distillation through CDM yields further performance improvements. The code is available at https://github.com/pppa2019/ContexualDynamicMapping

Summary

We haven't generated a summary for this paper yet.