Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sparse learning with concave regularization: relaxation of the irrepresentable condition (2502.10853v1)

Published 15 Feb 2025 in math.OC, cs.SY, and eess.SY

Abstract: Learning sparse models from data is an important task in all those frameworks where relevant information should be identified within a large dataset. This can be achieved by formulating and solving suitable sparsity promoting optimization problems. As to linear regression models, Lasso is the most popular convex approach, based on an $\ell_1$-norm regularization. In contrast, in this paper, we analyse a concave regularized approach, and we prove that it relaxes the irrepresentable condition, which is sufficient and essentially necessary for Lasso to select the right significant parameters. In practice, this has the benefit of reducing the number of necessary measurements with respect to Lasso. Since the proposed problem is non-convex, we also discuss different algorithms to solve it, and we illustrate the obtained enhancement via numerical experiments.

Summary

We haven't generated a summary for this paper yet.