Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Prediction uncertainty-aware planning using deep ensembles and trajectory optimisation (2502.10585v1)

Published 14 Feb 2025 in cs.RO

Abstract: Human motion is stochastic and ensuring safe robot navigation in a pedestrian-rich environment requires proactive decision-making. Past research relied on incorporating deterministic future states of surrounding pedestrians which can be overconfident leading to unsafe robot behaviour. The current paper proposes a predictive uncertainty-aware planner that integrates neural network based probabilistic trajectory prediction into planning. Our method uses a deep ensemble based network for probabilistic forecasting of surrounding humans and integrates the predictive uncertainty as constraints into the planner. We compare numerous constraint satisfaction methods on the planner and evaluated its performance on real world pedestrian datasets. Further, offline robot navigation was carried out on out-of-distribution pedestrian trajectories inside a narrow corridor

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com