Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DA-LIF: Dual Adaptive Leaky Integrate-and-Fire Model for Deep Spiking Neural Networks (2502.10422v1)

Published 5 Feb 2025 in cs.NE and cs.AI

Abstract: Spiking Neural Networks (SNNs) are valued for their ability to process spatio-temporal information efficiently, offering biological plausibility, low energy consumption, and compatibility with neuromorphic hardware. However, the commonly used Leaky Integrate-and-Fire (LIF) model overlooks neuron heterogeneity and independently processes spatial and temporal information, limiting the expressive power of SNNs. In this paper, we propose the Dual Adaptive Leaky Integrate-and-Fire (DA-LIF) model, which introduces spatial and temporal tuning with independently learnable decays. Evaluations on both static (CIFAR10/100, ImageNet) and neuromorphic datasets (CIFAR10-DVS, DVS128 Gesture) demonstrate superior accuracy with fewer timesteps compared to state-of-the-art methods. Importantly, DA-LIF achieves these improvements with minimal additional parameters, maintaining low energy consumption. Extensive ablation studies further highlight the robustness and effectiveness of the DA-LIF model.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Tianqing Zhang (33 papers)
  2. Kairong Yu (6 papers)
  3. Jian Zhang (543 papers)
  4. Hongwei Wang (150 papers)