Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Completeness of sparse, almost integer and finite local complexity sequences of translates in $L^p(\mathbb{R})$ (2502.10041v2)

Published 14 Feb 2025 in math.CA and math.FA

Abstract: A real sequence $\Lambda = {\lambda_n}{n=1}\infty$ is called $p$-generating if there exists a function $g$ whose translates ${g(x-\lambda_n)}{n=1}\infty$ span the space $Lp(\mathbb{R})$. While the $p$-generating sets were completely characterized for $p=1$ and $p>2$, the case $1 < p \le 2$ remains not well understood. In this case, both the size and the arithmetic structure of the set play an important role. In the present paper, (i) We show that a $p$-generating set $\Lambda$ of positive real numbers can be very sparse, namely, the ratios $\lambda_{n+1} / \lambda_n$ may tend to $1$ arbitrarily slowly; (ii) We prove that every "almost integer" sequence $\Lambda$, i.e. satisfying $\lambda_n = n + \alpha_n$, $0 \neq \alpha_n \to 0$, is $p$-generating; and (iii) We construct $p$-generating sets $\Lambda$ such that the successive differences $\lambda_{n+1} - \lambda_n$ attain only two different positive values. The constructions are, in a sense, extreme: it is well known that $\Lambda$ cannot be Hadamard lacunary and cannot be contained in any arithmetic progression.

Summary

We haven't generated a summary for this paper yet.