Fused Partial Gromov-Wasserstein for Structured Objects (2502.09934v1)
Abstract: Structured data, such as graphs, are vital in machine learning due to their capacity to capture complex relationships and interactions. In recent years, the Fused Gromov-Wasserstein (FGW) distance has attracted growing interest because it enables the comparison of structured data by jointly accounting for feature similarity and geometric structure. However, as a variant of optimal transport (OT), classical FGW assumes an equal mass constraint on the compared data. In this work, we relax this mass constraint and propose the Fused Partial Gromov-Wasserstein (FPGW) framework, which extends FGW to accommodate unbalanced data. Theoretically, we establish the relationship between FPGW and FGW and prove the metric properties of FPGW. Numerically, we introduce Frank-Wolfe solvers for the proposed FPGW framework and provide a convergence analysis. Finally, we evaluate the FPGW distance through graph classification and clustering experiments, demonstrating its robust performance, especially when data is corrupted by outlier noise.