Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Nonasymptotic CLT and Error Bounds for Two-Time-Scale Stochastic Approximation (2502.09884v2)

Published 14 Feb 2025 in cs.LG and cs.AI

Abstract: We consider linear two-time-scale stochastic approximation algorithms driven by martingale noise. Recent applications in machine learning motivate the need to understand finite-time error rates, but conventional stochastic approximation analysis focus on either asymptotic convergence in distribution or finite-time bounds that are far from optimal. Prior work on asymptotic central limit theorems (CLTs) suggest that two-time-scale algorithms may be able to achieve $1/\sqrt{n}$ error in expectation, with a constant given by the expected norm of the limiting Gaussian vector. However, the best known finite-time rates are much slower. We derive the first non-asymptotic central limit theorem with respect to the Wasserstein-1 distance for two-time-scale stochastic approximation with Polyak-Ruppert averaging. As a corollary, we show that expected error achieved by Polyak-Ruppert averaging decays at rate $1/\sqrt{n}$, which significantly improves on the rates of convergence in prior works.

Summary

We haven't generated a summary for this paper yet.