Improving Acoustic Side-Channel Attacks on Keyboards Using Transformers and Large Language Models (2502.09782v3)
Abstract: The increasing prevalence of microphones in everyday devices and the growing reliance on online services have amplified the risk of acoustic side-channel attacks (ASCAs) targeting keyboards. This study explores deep learning techniques, specifically vision transformers (VTs) and LLMs, to enhance the effectiveness and applicability of such attacks. We present substantial improvements over prior research, with the CoAtNet model achieving state-of-the-art performance. Our CoAtNet shows a 5.0% improvement for keystrokes recorded via smartphone (Phone) and 5.9% for those recorded via Zoom compared to previous benchmarks. We also evaluate transformer architectures and LLMs, with the best VT model matching CoAtNet's performance. A key advancement is the introduction of a noise mitigation method for real-world scenarios. By using LLMs for contextual understanding, we detect and correct erroneous keystrokes in noisy environments, enhancing ASCA performance. Additionally, fine-tuned lightweight LLMs with Low-Rank Adaptation (LoRA) deliver comparable performance to heavyweight models with 67X more parameters. This integration of VTs and LLMs improves the practical applicability of ASCA mitigation, marking the first use of these technologies to address ASCAs and error correction in real-world scenarios.