LDC-MTL: Balancing Multi-Task Learning through Scalable Loss Discrepancy Control (2502.08585v2)
Abstract: Multi-task learning (MTL) has been widely adopted for its ability to simultaneously learn multiple tasks. While existing gradient manipulation methods often yield more balanced solutions than simple scalarization-based approaches, they typically incur a significant computational overhead of $\mathcal{O}(K)$ in both time and memory, where $K$ is the number of tasks. In this paper, we propose LDC-MTL, a simple and scalable loss discrepancy control approach for MTL, formulated from a bilevel optimization perspective. Our method incorporates three key components: (i) a coarse loss pre-normalization, (ii) a bilevel formulation for fine-grained loss discrepancy control, and (iii) a scalable first-order bilevel algorithm that requires only $\mathcal{O}(1)$ time and memory. Theoretically, we prove that LDC-MTL guarantees convergence not only to a stationary point of the bilevel problem with loss discrepancy control but also to an $\epsilon$-accurate Pareto stationary point for all $K$ loss functions under mild conditions. Extensive experiments on diverse multi-task datasets demonstrate the superior performance of LDC-MTL in both accuracy and efficiency. Code is available at https://github.com/OptMN-Lab/LDC-MTL.