Papers
Topics
Authors
Recent
Search
2000 character limit reached

Simplifying Adversarially Robust PAC Learning with Tolerance

Published 11 Feb 2025 in cs.LG | (2502.07232v1)

Abstract: Adversarially robust PAC learning has proved to be challenging, with the currently best known learners [Montasser et al., 2021a] relying on improper methods based on intricate compression schemes, resulting in sample complexity exponential in the VC-dimension. A series of follow up work considered a slightly relaxed version of the problem called adversarially robust learning with tolerance [Ashtiani et al., 2023, Bhattacharjee et al., 2023, Raman et al., 2024] and achieved better sample complexity in terms of the VC-dimension. However, those algorithms were either improper and complex, or required additional assumptions on the hypothesis class H. We prove, for the first time, the existence of a simpler learner that achieves a sample complexity linear in the VC-dimension without requiring additional assumptions on H. Even though our learner is improper, it is "almost proper" in the sense that it outputs a hypothesis that is "similar" to a hypothesis in H. We also use the ideas from our algorithm to construct a semi-supervised learner in the tolerant setting. This simple algorithm achieves comparable bounds to the previous (non-tolerant) semi-supervised algorithm of Attias et al. [2022a], but avoids the use of intricate subroutines from previous works, and is "almost proper."

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.