Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

evclust: Python library for evidential clustering (2502.06587v1)

Published 10 Feb 2025 in cs.SE, cs.CV, and cs.LG

Abstract: A recent developing trend in clustering is the advancement of algorithms that not only identify clusters within data, but also express and capture the uncertainty of cluster membership. Evidential clustering addresses this by using the Dempster-Shafer theory of belief functions, a framework designed to manage and represent uncertainty. This approach results in a credal partition, a structured set of mass functions that quantify the uncertain assignment of each object to potential groups. The Python framework evclust, presented in this paper, offers a suite of efficient evidence clustering algorithms as well as tools for visualizing, evaluating and analyzing credal partitions.

Summary

We haven't generated a summary for this paper yet.