Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-Level Decoupled Relational Distillation for Heterogeneous Architectures (2502.06189v1)

Published 10 Feb 2025 in cs.CV

Abstract: Heterogeneous distillation is an effective way to transfer knowledge from cross-architecture teacher models to student models. However, existing heterogeneous distillation methods do not take full advantage of the dark knowledge hidden in the teacher's output, limiting their performance.To this end, we propose a novel framework named Multi-Level Decoupled Relational Knowledge Distillation (MLDR-KD) to unleash the potential of relational distillation in heterogeneous distillation. Concretely, we first introduce Decoupled Finegrained Relation Alignment (DFRA) in both logit and feature levels to balance the trade-off between distilled dark knowledge and the confidence in the correct category of the heterogeneous teacher model. Then, Multi-Scale Dynamic Fusion (MSDF) module is applied to dynamically fuse the projected logits of multiscale features at different stages in student model, further improving performance of our method in feature level. We verify our method on four architectures (CNNs, Transformers, MLPs and Mambas), two datasets (CIFAR-100 and Tiny-ImageNet). Compared with the best available method, our MLDR-KD improves student model performance with gains of up to 4.86% on CIFAR-100 and 2.78% on Tiny-ImageNet datasets respectively, showing robustness and generality in heterogeneous distillation. Code will be released soon.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (7)
  1. Yaoxin Yang (4 papers)
  2. Peng Ye (142 papers)
  3. Weihao Lin (14 papers)
  4. Kangcong Li (2 papers)
  5. Yan Wen (11 papers)
  6. Jia Hao (7 papers)
  7. Tao Chen (397 papers)

Summary

We haven't generated a summary for this paper yet.