Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Generative Models with Hard Linear Equality Constraints (2502.05416v2)

Published 8 Feb 2025 in cs.LG

Abstract: While deep generative models~(DGMs) have demonstrated remarkable success in capturing complex data distributions, they consistently fail to learn constraints that encode domain knowledge and thus require constraint integration. Existing solutions to this challenge have primarily relied on heuristic methods and often ignore the underlying data distribution, harming the generative performance. In this work, we propose a probabilistically sound approach for enforcing the hard constraints into DGMs to generate constraint-compliant and realistic data. This is achieved by our proposed gradient estimators that allow the constrained distribution, the data distribution conditioned on constraints, to be differentiably learned. We carry out extensive experiments with various DGM model architectures over five image datasets and three scientific applications in which domain knowledge is governed by linear equality constraints. We validate that the standard DGMs almost surely generate data violating the constraints. Among all the constraint integration strategies, ours not only guarantees the satisfaction of constraints in generation but also archives superior generative performance than the other methods across every benchmark.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Ruoyan Li (5 papers)
  2. Dipti Ranjan Sahu (1 paper)
  3. Guy Van den Broeck (104 papers)
  4. Zhe Zeng (16 papers)

Summary

We haven't generated a summary for this paper yet.