Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Survey on AI-Generated Media Detection: From Non-MLLM to MLLM (2502.05240v2)

Published 7 Feb 2025 in cs.CV

Abstract: The proliferation of AI-generated media poses significant challenges to information authenticity and social trust, making reliable detection methods highly demanded. Methods for detecting AI-generated media have evolved rapidly, paralleling the advancement of Multimodal LLMs (MLLMs). Current detection approaches can be categorized into two main groups: Non-MLLM-based and MLLM-based methods. The former employs high-precision, domain-specific detectors powered by deep learning techniques, while the latter utilizes general-purpose detectors based on MLLMs that integrate authenticity verification, explainability, and localization capabilities. Despite significant progress in this field, there remains a gap in literature regarding a comprehensive survey that examines the transition from domain-specific to general-purpose detection methods. This paper addresses this gap by providing a systematic review of both approaches, analyzing them from single-modal and multi-modal perspectives. We present a detailed comparative analysis of these categories, examining their methodological similarities and differences. Through this analysis, we explore potential hybrid approaches and identify key challenges in forgery detection, providing direction for future research. Additionally, as MLLMs become increasingly prevalent in detection tasks, ethical and security considerations have emerged as critical global concerns. We examine the regulatory landscape surrounding Generative AI (GenAI) across various jurisdictions, offering valuable insights for researchers and practitioners in this field.

Summary

We haven't generated a summary for this paper yet.