Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multimodal Stock Price Prediction (2502.05186v1)

Published 23 Jan 2025 in q-fin.ST, cs.AI, and cs.LG

Abstract: In an era where financial markets are heavily influenced by many static and dynamic factors, it has become increasingly critical to carefully integrate diverse data sources with machine learning for accurate stock price prediction. This paper explores a multimodal machine learning approach for stock price prediction by combining data from diverse sources, including traditional financial metrics, tweets, and news articles. We capture real-time market dynamics and investor mood through sentiment analysis on these textual data using both ChatGPT-4o and FinBERT models. We look at how these integrated data streams augment predictions made with a standard Long Short-Term Memory (LSTM model) to illustrate the extent of performance gains. Our study's results indicate that incorporating the mentioned data sources considerably increases the forecast effectiveness of the reference model by up to 5%. We also provide insights into the individual and combined predictive capacities of these modalities, highlighting the substantial impact of incorporating sentiment analysis from tweets and news articles. This research offers a systematic and effective framework for applying multimodal data analytics techniques in financial time series forecasting that provides a new view for investors to leverage data for decision-making.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com
Youtube Logo Streamline Icon: https://streamlinehq.com