Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Blackwell's Approachability with Approximation Algorithms (2502.03919v2)

Published 6 Feb 2025 in math.OC and cs.LG

Abstract: We revisit Blackwell's celebrated approachability problem which considers a repeated vector-valued game between a player and an adversary. Motivated by settings in which the action set of the player or adversary (or both) is difficult to optimize over, for instance when it corresponds to the set of all possible solutions to some NP-Hard optimization problem, we ask what can the player guarantee \textit{efficiently}, when only having access to these sets via approximation algorithms with ratios $\alpha_{\mX} \geq 1$ and $ 1 \geq \alpha_{\mY} > 0$, respectively. Assuming the player has monotone preferences, in the sense that he does not prefer a vector-valued loss $\ell_1$ over $\ell_2$ if $\ell_2 \leq \ell_1$, we establish that given a Blackwell instance with an approachable target set $S$, the downward closure of the appropriately-scaled set $\alpha_{\mX}\alpha_{\mY}{-1}S$ is \textit{efficiently} approachable with optimal rate. In case only the player's or adversary's set is equipped with an approximation algorithm, we give simpler and more efficient algorithms.

Summary

We haven't generated a summary for this paper yet.