Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Structured Token Retention and Computational Memory Paths in Large Language Models (2502.03102v2)

Published 5 Feb 2025 in cs.CL

Abstract: Memory retention mechanisms play a central role in determining the efficiency of computational architectures designed for processing extended sequences. Conventional methods for token management often impose fixed retention thresholds or rely on uniform attention weight distributions, leading to inefficient memory utilization and premature information loss in extended sequence modeling. Structured Token Retention (STR) introduces a probabilistic selection framework that dynamically adjusts token persistence based on contextual significance, ensuring that computational resources are allocated to semantically relevant elements. Computational Memory Paths (CMP) extend this framework through hierarchical memory allocation, refining retention efficiency through structured reallocation of token embeddings. Comparative assessments against baseline models demonstrate that STR and CMP improve token survival rates across long input sequences while reducing cumulative error propagation across processing layers. Experimental results further indicate reductions in computational overhead, improving inference speed without degrading contextual coherence. Token distribution analyses reveal that structured memory allocation prevents excessive redundancy in attention weight calculations, optimizing information retrieval efficiency in large-scale generative architectures. The integration of STR and CMP into an open-source model illustrates the adaptability of structured memory retention methodologies, highlighting their applicability in generative text processing, long-context comprehension, and scalable sequence modeling.

Summary

We haven't generated a summary for this paper yet.