Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 32 tok/s
GPT-5 High 40 tok/s Pro
GPT-4o 83 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 197 tok/s Pro
2000 character limit reached

Evaluating the Effectiveness of LLMs in Fixing Maintainability Issues in Real-World Projects (2502.02368v1)

Published 4 Feb 2025 in cs.SE and cs.AI

Abstract: LLMs have gained attention for addressing coding problems, but their effectiveness in fixing code maintainability remains unclear. This study evaluates LLMs capability to resolve 127 maintainability issues from 10 GitHub repositories. We use zero-shot prompting for Copilot Chat and Llama 3.1, and few-shot prompting with Llama only. The LLM-generated solutions are assessed for compilation errors, test failures, and new maintainability problems. Llama with few-shot prompting successfully fixed 44.9% of the methods, while Copilot Chat and Llama zero-shot fixed 32.29% and 30%, respectively. However, most solutions introduced errors or new maintainability issues. We also conducted a human study with 45 participants to evaluate the readability of 51 LLM-generated solutions. The human study showed that 68.63% of participants observed improved readability. Overall, while LLMs show potential for fixing maintainability issues, their introduction of errors highlights their current limitations.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com