2000 character limit reached
Estimating Network Models using Neural Networks (2502.01810v1)
Published 3 Feb 2025 in cs.SI, econ.EM, stat.CO, and stat.ML
Abstract: Exponential random graph models (ERGMs) are very flexible for modeling network formation but pose difficult estimation challenges due to their intractable normalizing constant. Existing methods, such as MCMC-MLE, rely on sequential simulation at every optimization step. We propose a neural network approach that trains on a single, large set of parameter-simulation pairs to learn the mapping from parameters to average network statistics. Once trained, this map can be inverted, yielding a fast and parallelizable estimation method. The procedure also accommodates extra network statistics to mitigate model misspecification. Some simple illustrative examples show that the method performs well in practice.