Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Estimating Network Models using Neural Networks (2502.01810v1)

Published 3 Feb 2025 in cs.SI, econ.EM, stat.CO, and stat.ML

Abstract: Exponential random graph models (ERGMs) are very flexible for modeling network formation but pose difficult estimation challenges due to their intractable normalizing constant. Existing methods, such as MCMC-MLE, rely on sequential simulation at every optimization step. We propose a neural network approach that trains on a single, large set of parameter-simulation pairs to learn the mapping from parameters to average network statistics. Once trained, this map can be inverted, yielding a fast and parallelizable estimation method. The procedure also accommodates extra network statistics to mitigate model misspecification. Some simple illustrative examples show that the method performs well in practice.

Summary

We haven't generated a summary for this paper yet.