Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Multiquantum Bits, Segre Embeddings and Coxeter Chambers (2502.00461v1)

Published 1 Feb 2025 in quant-ph, cs.IT, math.AG, math.IT, and math.NT

Abstract: This work explores the interplay between quantum information theory, algebraic geometry, and number theory, with a particular focus on multiqubit systems, their entanglement structure, and their classification via geometric embeddings. The Segre embedding, a fundamental construction in algebraic geometry, provides an algebraic framework to distinguish separable and entangled states, encoding quantum correlations in projective geometry. We develop a systematic study of qubit moduli spaces, illustrating the geometric structure of entanglement through hypercube constructions and Coxeter chamber decompositions. We establish a bijection between the Segre embeddings of tensor products of projective spaces and binary words of length $n-1$, structured as an $(n-1)$-dimensional hypercube, where adjacency corresponds to a single Segre operation. This reveals a combinatorial structure underlying the hierarchy of embeddings, with direct implications for quantum error correction schemes. The symmetry of the Segre variety under the Coxeter group of type $A$ allows us to analyze quantum states and errors through the lens of reflection groups, viewing separable states as lying in distinct Coxeter chambers on a Segre variety. The transitive action of the permutation group on these chambers provides a natural method for tracking errors in quantum states and potentially reversing them. Beyond foundational aspects, we highlight relations between Segre varieties and Dixon elliptic curves, drawing connections between entanglement and number theory.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com