Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Distributive Fairness in Large Language Models: Evaluating Alignment with Human Values (2502.00313v1)

Published 1 Feb 2025 in cs.GT, cs.AI, cs.CL, and cs.MA

Abstract: The growing interest in employing LLMs for decision-making in social and economic contexts has raised questions about their potential to function as agents in these domains. A significant number of societal problems involve the distribution of resources, where fairness, along with economic efficiency, play a critical role in the desirability of outcomes. In this paper, we examine whether LLM responses adhere to fundamental fairness concepts such as equitability, envy-freeness, and Rawlsian maximin, and investigate their alignment with human preferences. We evaluate the performance of several LLMs, providing a comparative benchmark of their ability to reflect these measures. Our results demonstrate a lack of alignment between current LLM responses and human distributional preferences. Moreover, LLMs are unable to utilize money as a transferable resource to mitigate inequality. Nonetheless, we demonstrate a stark contrast when (some) LLMs are tasked with selecting from a predefined menu of options rather than generating one. In addition, we analyze the robustness of LLM responses to variations in semantic factors (e.g. intentions or personas) or non-semantic prompting changes (e.g. templates or orderings). Finally, we highlight potential strategies aimed at enhancing the alignment of LLM behavior with well-established fairness concepts.

Summary

We haven't generated a summary for this paper yet.