Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DISC: Dataset for Analyzing Driving Styles In Simulated Crashes for Mixed Autonomy (2502.00050v1)

Published 28 Jan 2025 in cs.RO and cs.LG

Abstract: Handling pre-crash scenarios is still a major challenge for self-driving cars due to limited practical data and human-driving behavior datasets. We introduce DISC (Driving Styles In Simulated Crashes), one of the first datasets designed to capture various driving styles and behaviors in pre-crash scenarios for mixed autonomy analysis. DISC includes over 8 classes of driving styles/behaviors from hundreds of drivers navigating a simulated vehicle through a virtual city, encountering rare-event traffic scenarios. This dataset enables the classification of pre-crash human driving behaviors in unsafe conditions, supporting individualized trajectory prediction based on observed driving patterns. By utilizing a custom-designed VR-based in-house driving simulator, TRAVERSE, data was collected through a driver-centric study involving human drivers encountering twelve simulated accident scenarios. This dataset fills a critical gap in human-centric driving data for rare events involving interactions with autonomous vehicles. It enables autonomous systems to better react to human drivers and optimize trajectory prediction in mixed autonomy environments involving both human-driven and self-driving cars. In addition, individual driving behaviors are classified through a set of standardized questionnaires, carefully designed to identify and categorize driving behavior traits. We correlate data features with driving behaviors, showing that the simulated environment reflects real-world driving styles. DISC is the first dataset to capture how various driving styles respond to accident scenarios, offering significant potential to enhance autonomous vehicle safety and driving behavior analysis in mixed autonomy environments.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com