Examining the Impact of Income Inequality and Gender on School Completion in Malaysia: A Machine Learning Approach Utilizing Malaysia's Public Sector Open Data (2501.18868v1)
Abstract: This study examines the relationship between income inequality, gender, and school completion rates in Malaysia using machine learning techniques. The dataset utilized is from the Malaysia's Public Sector Open Data Portal, covering the period 2016-2022. The analysis employs various machine learning techniques, including K-means clustering, ARIMA modeling, Random Forest regression, and Prophet for time series forecasting. These models are used to identify patterns, trends, and anomalies in the data, and to predict future school completion rates. Key findings reveal significant disparities in school completion rates across states, genders, and income levels. The analysis also identifies clusters of states with similar completion rates, suggesting potential regional factors influencing educational outcomes. Furthermore, time series forecasting models accurately predict future completion rates, highlighting the importance of ongoing monitoring and intervention strategies. The study concludes with recommendations for policymakers and educators to address the observed disparities and improve school completion rates in Malaysia. These recommendations include targeted interventions for specific states and demographic groups, investment in early childhood education, and addressing the impact of income inequality on educational opportunities. The findings of this study contribute to the understanding of the factors influencing school completion in Malaysia and provide valuable insights for policymakers and educators to develop effective strategies to improve educational outcomes.