Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Model-Adaptive Approach to Dynamic Discrete Choice Models with Large State Spaces (2501.18746v2)

Published 30 Jan 2025 in econ.EM

Abstract: Estimation and counterfactual experiments in dynamic discrete choice models with large state spaces pose computational difficulties. This paper develops a novel model-adaptive approach to solve the linear system of fixed point equations of the policy valuation operator. We propose a model-adaptive sieve space, constructed by iteratively augmenting the space with the residual from the previous iteration. We show both theoretically and numerically that model-adaptive sieves dramatically improve performance. In particular, the approximation error decays at a superlinear rate in the sieve dimension, unlike a linear rate achieved using conventional methods. Our method works for both conditional choice probability estimators and full-solution estimators with policy iteration. We apply the method to analyze consumer demand for laundry detergent using Kantar's Worldpanel Take Home data. On average, our method is 51.5% faster than conventional methods in solving the dynamic programming problem, making the Bayesian MCMC estimator computationally feasible.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com