Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
112 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Machine Learning Strategies for Parkinson Tremor Classification Using Wearable Sensor Data (2501.18671v1)

Published 30 Jan 2025 in cs.LG and eess.SP

Abstract: Parkinson's disease (PD) is a neurological disorder requiring early and accurate diagnosis for effective management. Machine learning (ML) has emerged as a powerful tool to enhance PD classification and diagnostic accuracy, particularly by leveraging wearable sensor data. This survey comprehensively reviews current ML methodologies used in classifying Parkinsonian tremors, evaluating various tremor data acquisition methodologies, signal preprocessing techniques, and feature selection methods across time and frequency domains, highlighting practical approaches for tremor classification. The survey explores ML models utilized in existing studies, ranging from traditional methods such as Support Vector Machines (SVM) and Random Forests to advanced deep learning architectures like Convolutional Neural Networks (CNN) and Long Short-Term Memory networks (LSTM). We assess the efficacy of these models in classifying tremor patterns associated with PD, considering their strengths and limitations. Furthermore, we discuss challenges and discrepancies in current research and broader challenges in applying ML to PD diagnosis using wearable sensor data. We also outline future research directions to advance ML applications in PD diagnostics, providing insights for researchers and practitioners.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets