Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Decentralised convex optimisation with probability-proportional-to-size quantization (2501.18312v1)

Published 30 Jan 2025 in math.OC

Abstract: Communication is one of the bottlenecks of distributed optimisation and learning. To overcome this bottleneck, we propose a novel quantization method that transforms a vector into a sample of components' indices drawn from a categorical distribution with probabilities proportional to values at those components. Then, we propose a primal and a primal-dual accelerated stochastic gradient methods that use our proposed quantization, and derive their convergence rates in terms of probabilities of large deviations. We focus on affine-constrained convex optimisation and its application to decentralised distributed optimisation problems. To illustrate the work of our algorithm, we apply it to the decentralised computation of semi-discrete entropy regularized Wasserstein barycenters.

Summary

We haven't generated a summary for this paper yet.