Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

How Much Do Code Language Models Remember? An Investigation on Data Extraction Attacks before and after Fine-tuning (2501.17501v2)

Published 29 Jan 2025 in cs.CR

Abstract: Code LLMs, while widely popular, are often trained on unsanitized source code gathered from across the Internet. Previous work revealed that pre-trained models can remember the content of their training data and regurgitate them through data extraction attacks. Due to the large size of current models, only a few entities have the resources for pre-training such models. However, fine-tuning requires fewer resources and is increasingly used by both small and large entities for its effectiveness on specialized data. Such small curated data for fine-tuning might contain sensitive information or proprietary assets. In this study, we attack both pre-trained and fine-tuned code LLMs to investigate the extent of data extractability. We first develop a custom benchmark to assess the vulnerability of both pre-training and fine-tuning samples to extraction attacks. Our findings reveal that 54.9% of extractable pre-training data could be retrieved from StarCoder2-15B, whereas this number decreased to 23.5% after fine-tuning. This indicates that fine-tuning reduces the extractability of pre-training data. However, compared to larger models, fine-tuning smaller models increases their vulnerability to data extraction attacks on fine-tuning data. Given the potential sensitivity of fine-tuning data, this can lead to more severe consequences. Lastly, we also manually analyzed 2000 extractable samples before and after fine-tuning. We also found that data carriers and licensing information are the most likely data categories to be memorized from pre-trained and fine-tuned models, while the latter is the most likely to be forgotten after fine-tuning.

Summary

We haven't generated a summary for this paper yet.