Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Decoding Human Preferences in Alignment: An Improved Approach to Inverse Constitutional AI (2501.17112v2)

Published 28 Jan 2025 in cs.LG

Abstract: Traditional methods for aligning LLMs, such as Reinforcement Learning from Human Feedback (RLHF) and Direct Preference Optimization (DPO), rely on implicit principles, limiting interpretability. Constitutional AI (CAI) offers an explicit, rule-based framework for guiding LLM alignment. Building on this, we refine the Inverse Constitutional AI (ICAI) algorithm, which extracts constitutions from preference datasets. By improving principle generation, clustering, and embedding processes, our approach enhances the accuracy and generalizability of extracted principles across synthetic and real-world datasets. Our results highlight the potential of these principles to foster more transparent and adaptable alignment methods, offering a promising direction for future advancements beyond traditional fine-tuning.

Summary

We haven't generated a summary for this paper yet.