Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
86 tokens/sec
Gemini 2.5 Pro Premium
43 tokens/sec
GPT-5 Medium
19 tokens/sec
GPT-5 High Premium
30 tokens/sec
GPT-4o
93 tokens/sec
DeepSeek R1 via Azure Premium
88 tokens/sec
GPT OSS 120B via Groq Premium
441 tokens/sec
Kimi K2 via Groq Premium
234 tokens/sec
2000 character limit reached

Nonparametric Sparse Online Learning of the Koopman Operator (2501.16489v2)

Published 27 Jan 2025 in stat.ML, cs.LG, cs.SY, and eess.SY

Abstract: The Koopman operator provides a powerful framework for representing the dynamics of general nonlinear dynamical systems. Data-driven techniques to learn the Koopman operator typically assume that the chosen function space is closed under system dynamics. In this paper, we study the Koopman operator via its action on the reproducing kernel Hilbert space (RKHS), and explore the mis-specified scenario where the dynamics may escape the chosen function space. We relate the Koopman operator to the conditional mean embeddings (CME) operator and then present an operator stochastic approximation algorithm to learn the Koopman operator iteratively with control over the complexity of the representation. We provide both asymptotic and finite-time last-iterate guarantees of the online sparse learning algorithm with trajectory-based sampling with an analysis that is substantially more involved than that for finite-dimensional stochastic approximation. Numerical examples confirm the effectiveness of the proposed algorithm.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube