Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Gaussian credible intervals in Bayesian nonparametric estimation of the unseen (2501.16008v1)

Published 27 Jan 2025 in stat.ME, cs.LG, stat.ML, and stat.OT

Abstract: The unseen-species problem assumes $n\geq1$ samples from a population of individuals belonging to different species, possibly infinite, and calls for estimating the number $K_{n,m}$ of hitherto unseen species that would be observed if $m\geq1$ new samples were collected from the same population. This is a long-standing problem in statistics, which has gained renewed relevance in biological and physical sciences, particularly in settings with large values of $n$ and $m$. In this paper, we adopt a Bayesian nonparametric approach to the unseen-species problem under the Pitman-Yor prior, and propose a novel methodology to derive large $m$ asymptotic credible intervals for $K_{n,m}$, for any $n\geq1$. By leveraging a Gaussian central limit theorem for the posterior distribution of $K_{n,m}$, our method improves upon competitors in two key aspects: firstly, it enables the full parameterization of the Pitman-Yor prior, including the Dirichlet prior; secondly, it avoids the need of Monte Carlo sampling, enhancing computational efficiency. We validate the proposed method on synthetic and real data, demonstrating that it improves the empirical performance of competitors by significantly narrowing the gap between asymptotic and exact credible intervals for any $m\geq1$.

Summary

We haven't generated a summary for this paper yet.