Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Music Generation using Human-In-The-Loop Reinforcement Learning (2501.15304v1)

Published 25 Jan 2025 in cs.SD, cs.AI, cs.HC, cs.LG, and eess.AS

Abstract: This paper presents an approach that combines Human-In-The-Loop Reinforcement Learning (HITL RL) with principles derived from music theory to facilitate real-time generation of musical compositions. HITL RL, previously employed in diverse applications such as modelling humanoid robot mechanics and enhancing LLMs, harnesses human feedback to refine the training process. In this study, we develop a HILT RL framework that can leverage the constraints and principles in music theory. In particular, we propose an episodic tabular Q-learning algorithm with an epsilon-greedy exploration policy. The system generates musical tracks (compositions), continuously enhancing its quality through iterative human-in-the-loop feedback. The reward function for this process is the subjective musical taste of the user.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Aju Ani Justus (1 paper)