Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
72 tokens/sec
GPT-4o
61 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
8 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Evaluating Hallucination in Large Vision-Language Models based on Context-Aware Object Similarities (2501.15046v1)

Published 25 Jan 2025 in cs.CV, cs.AI, and cs.LG

Abstract: Despite their impressive performance on multi-modal tasks, large vision-LLMs (LVLMs) tend to suffer from hallucinations. An important type is object hallucination, where LVLMs generate objects that are inconsistent with the images shown to the model. Existing works typically attempt to quantify object hallucinations by detecting and measuring the fraction of hallucinated objects in generated captions. Additionally, more recent work also measures object hallucinations by directly querying the LVLM with binary questions about the presence of likely hallucinated objects based on object statistics like top-k frequent objects and top-k co-occurring objects. In this paper, we present Context-Aware Object Similarities (CAOS), a novel approach for evaluating object hallucination in LVLMs using object statistics as well as the generated captions. CAOS uniquely integrates object statistics with semantic relationships between objects in captions and ground-truth data. Moreover, existing approaches usually only detect and measure hallucinations belonging to a predetermined set of in-domain objects (typically the set of all ground-truth objects for the training dataset) and ignore generated objects that are not part of this set, leading to under-evaluation. To address this, we further employ LLM--based object recognition to detect potentially out-of-domain hallucinated objects and use an ensemble of LVLMs for verifying the presence of such objects in the query image. CAOS also examines the sequential dynamics of object generation, shedding light on how the order of object appearance influences hallucinations, and employs word embedding models to analyze the semantic reasons behind hallucinations. CAOS aims to offer a nuanced understanding of the hallucination tendencies of LVLMs by providing a systematic framework to identify and interpret object hallucinations.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Shounak Datta (26 papers)
  2. Dhanasekar Sundararaman (10 papers)