Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Performance Evaluation of Satellite-Based Data Offloading on Starlink Constellations (2501.14878v2)

Published 24 Jan 2025 in cs.NI

Abstract: Vehicular Edge Computing (VEC) is a key research area in autonomous driving. As Intelligent Transportation Systems (ITSs) continue to expand, ground vehicles (GVs) face the challenge of handling huge amounts of sensor data to drive safely. Specifically, due to energy and capacity limitations, GVs will need to offload resource-hungry tasks to external (cloud) computing units for faster processing. In 6th generation (6G) wireless systems, the research community is exploring the concept of Non-Terrestrial Networks (NTNs), where satellites can serve as space edge computing nodes to aggregate, store, and process data from GVs. In this paper we propose new data offloading strategies between a cluster of GVs and satellites in the Low Earth Orbits (LEOs), to optimize the trade-off between coverage and end-to-end delay. For the accuracy of the simulations, we consider real data and orbits from the Starlink constellation, one of the most representative and popular examples of commercial satellite deployments for communication. Our results demonstrate that Starlink satellites can support real-time offloading under certain conditions that depend on the onboard computational capacity of the satellites, the frame rate of the sensors, and the number of GVs.

Summary

We haven't generated a summary for this paper yet.