Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Experimentally Evaluating the Resource Efficiency of Big Data Autoscaling (2501.14456v1)

Published 24 Jan 2025 in cs.DC

Abstract: Distributed dataflow systems like Spark and Flink enable data-parallel processing of large datasets on clusters. Yet, selecting appropriate computational resources for dataflow jobs is often challenging. For efficient execution, individual resource allocations, such as memory and CPU cores, must meet the specific resource requirements of the job. An alternative to selecting a static resource allocation for a job execution is autoscaling as implemented for example by Spark. In this paper, we evaluate the resource efficiency of autoscaling batch data processing jobs based on resource demand both conceptually and experimentally by analyzing a new dataset of Spark job executions on Google Dataproc Serverless. In our experimental evaluation, we show that there is no significant resource efficiency gain over static resource allocations. We found that the inherent conceptual limitations of such autoscaling approaches are the inelasticity of node size as well as the inelasticity of the ratio of memory to CPU cores.

Summary

We haven't generated a summary for this paper yet.